Math 3 Midterm (Fall 2016)

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Supply the missing reasons to complete the proof.

Given: $\angle Q \cong \angle T$ and $\overline{Q R} \cong \overline{T R}$
Prove: $\overline{P R} \cong \overline{S R}$

Statement	Reasons
1. $\angle Q \cong \angle T$ and	1. Given
$\overline{Q R} \cong \overline{T R}$	
2. $\angle P R Q \cong \angle S R T$	2. Vertical angles are congruent.
3. $\triangle P R Q \cong \triangle S R T$	3.$?$ 4. $\overline{P R} \cong \overline{S R}$
4. +	

a. ASA; Substitution
c. AAS; CPCTC
b. SAS; CPCTC
d. ASA; CPCTC
2. If $\triangle M N O \cong \triangle P Q R$, which of the following can you NOT conclude as being true?
a. $\overline{M N} \cong \overline{P R}$
b. $\angle M \cong \angle P$
c. $\overline{\mathrm{NO}} \cong \overline{Q R}$
d. $\angle N \cong \angle Q$
\qquad 3. Based on the given information, what can you conclude, and why?

Given: $\angle H \cong \angle L, \overline{H J} \cong \overline{J L}$

a. $\triangle H I J \cong \triangle L K J$ by ASA
b. $\triangle H I J \cong \triangle J L K$ by SAS
c. $\triangle H I J \cong \triangle J L K$ by ASA
d. $\triangle H I J \cong \triangle L K J$ by SAS
4. Given the system of constraints, name all vertices. Then find the maximum value of the given objective function.

$$
\left\{\begin{array}{l}
x \geq 0 \\
y \geq 0 \\
6 x-2 y \leq 12 \\
4 y \leq 4 x+8
\end{array}\right.
$$

Maximum for $C=4 x-3 y$
a. $(0,2),(2,0),(4,6)$; maximum value of -6
b. $(0,2),(2,0),(6,4)$; maximum value of 12
c. $(0,2),(2,0),(4,2)$; maximum value of 10
d. $(0,2),(2,0),(4,6)$; maximum value of 8
5. Your computer supply store sells two types of inkjet printers. The first, type A, costs $\$ 137$ and you make a $\$ 50$ profit on each one. The second, type B, costs $\$ 100$ and you make a $\$ 40$ profit on each one. You can order no more than 100 printers this month, and you need to make at least $\$ 4400$ profit on them. If you must order at least one of each type of printer, how many of each type of printer should you order if you want to minimize your cost?
a. 40 of type A
c. 60 of type A
60 of type B
40 of type B
b. 30 of type A
70 of type B
d. 70 of type A
30 of type B
6. The table shows the height of a plant as it grows.
a. Model the data with an equation.
b. Based on your model, predict the height of the plant at 12 months.

Time (months)	Plant Height (cm)
3	9
5	15
7	21
9	27

a. $y-3=\frac{3}{2}(x-9) ; 39 \mathrm{~cm}$
c. $y-9=\frac{3}{2}(x-3) ; 18 \mathrm{~cm}$
b. $y-9=3(x-3) ; 36 \mathrm{~cm}$
d. The relationship cannot be modeled.

Tell whether the lines for each pair of equations are parallel, perpendicular, or neither.
7. $7 x-4 y=4$
$x-4 y=3$
a. perpendicular
b. parallel
c. neither
8. $y=-\frac{1}{2} x-11$
$16 x-8 y=-8$
a. neither
b. perpendicular
c. parallel

Use a graphing calculator to find the equation of the line of best fit for the data. Find the value of the correlation coefficient r.
9.

Average Speed (mi/h)	Time (hours)
8.5	2.5
7.5	3.75
6.5	4.5
6.0	5.0
5.5	5.5
5.0	6.25
4.0	6.75
3.5	8.75

a. $\quad y=11.83 x-1.11 ; r=-0.9760964904$
b. $y=-1.11 x+11.83 ; r=-0.9760964904$
c. $y=11.83 x-1.11 ; r=0.9527643586$
d. $y=-1.11 x+11.83 ; r=0.9527643586$
10. Find the perimeter of the figure. Simplify the answer.

a. $9 x+2 y$
b. $10 x+y$
c. $10 x+2 y$
d. $9 x+3 y$
11. Graph the equation $-3 x-y=6$.
a.

c.

b.

d.

Find the slope of the line.
12. $3 x+5 y=-15$
a. $\begin{array}{r}5 \\ -3\end{array}$
b. 5
c. $-\frac{3}{5}$
d. $\begin{array}{r}3 \\ 5\end{array}$

Find an equation for the line:
13. through $(-4,6)$ and parallel to $y=-3 x+4$.
a. $y=-3 x-6$
b. $y=3 x+18$
c. $y=\frac{1}{3} x+\begin{gathered}22 \\ 3\end{gathered}$
d. $y=-\frac{1}{3} x+\begin{gathered}14 \\ 3\end{gathered}$

Graph the inequality.
\qquad 14. $4 x-2 y<-3$

15. Write an inequality for the graph.

a. $-6 x+5 y \geq-30$
b. $-6 x+5 y \leq-30$
c. $5 x-6 y \leq-30$
d. $5 x-6 y \geq-30$

Solve the system by graphing.

\qquad 16. $\left\{\begin{array}{l}y=-x-9 \\ 3 x-y=-11\end{array}\right.$

a.

c.

17. A rental car agency charges a flat fee of $\$ 32.00$ plus $\$ 3.00$ per day to rent a certain car. Another agency charges a fee of $\$ 30.50$ plus $\$ 3.25$ per day to rent the same car.
a. Write a system of equations to represent the cost c for renting a car at each agency for d days.
b. Using a graphing calculator, find the number of days for which the costs are the same.

Round your answer to the nearest whole day.
a.
a. $\left\{\begin{array}{l}c=3.00 d+32.00 \\ c=3.25 d+30.50\end{array}\right.$
c. a. $\left\{\begin{array}{l}c=3.00 d+32.00 \\ c=3.25 d+30.50\end{array}\right.$
b. 11
b. a. $\left\{\begin{array}{l}c=3.00 d+30.50 \\ c=3.25 d+32.00\end{array}\right.$
d. a. $\left\{\begin{array}{l}c=3.00 d+30.50 \\ c=3.25 d+32.00\end{array}\right.$
b. 6
b. 11

Solve the system by the method of substitution.

18. $\left\{\begin{array}{l}5 x-y=5 \\ 5 x-3 y=15\end{array}\right.$
a. $(0,-5)$
b. $(-5,0)$
c. $(5,1)$
d. $(1,5)$
19. A group of 52 people attended a ball game. There were three times as many children as adults in the group. Set up a system of equations that represents the numbers of adults and children who attended the game and solve the system to find the number of children who were in the group.
a. $\left\{\begin{array}{l}a+c=52 \\ a=c+3\end{array} ; 39\right.$ adults; 25 children
b. $\left\{\begin{array}{l}a+c=52 \\ a=3 c\end{array} ; 39\right.$ adults, 13 children
c. $\left\{\begin{array}{l}a+c=52 \\ c=a+3\end{array} ; 25\right.$ adults; 39 children
d. $\left\{\begin{array}{l}a+c=52 \\ c=3 a\end{array} ; 13\right.$ adults, 39 children
20. The length of a rectangle is 7.8 cm more than 4 times the width. If the perimeter of the rectangle is 94.6 cm , what are its dimensions?
a. length $=7.9 \mathrm{~cm}$; width $=39.4 \mathrm{~cm}$
c. length $=39.4 \mathrm{~cm}$; width $=15.7 \mathrm{~cm}$
b. length $=23.8 \mathrm{~cm}$; width $=15.7 \mathrm{~cm}$
d. length $=39.4 \mathrm{~cm}$; width $=7.9 \mathrm{~cm}$

Use the elimination method to solve the system.
\qquad 21. $\left\{\begin{array}{l}-4 x+4 y=-8 \\ x-4 y=-7\end{array}\right.$
a. $(3,5)$
b. $(5,3)$
c. $(-3,-5)$
d. $(-5,-3)$

Solve the system of inequalities by graphing.
22. $\left\{\begin{array}{l}x \geq-2 \\ y>3\end{array}\right.$

a.

c.

b.

d.

23. Your club is baking vanilla and chocolate cakes for a bake sale. They need at most 25 cakes. You cannot have more than 10 chocolate cakes. Write and graph a system of inequalities to model this system.
a. Let $x=$ the number of vanilla cakes.

Let $y=$ the number of chocolate cakes.

$$
\left\{\begin{array}{l}
x \geq 0 \\
y \geq 0 \\
x+y<25 \\
y<10
\end{array}\right.
$$

b. Let $x=$ the number of vanilla cakes.

Let $y=$ the number of chocolate cakes.

$$
\left\{\begin{array}{l}
x \geq 0 \\
y \geq 0 \\
x+y \leq 25 \\
y \leq 10
\end{array}\right.
$$

c. Let $x=$ the number of vanilla cakes.

Let $y=$ the number of chocolate cakes.

d. Let $x=$ the number of vanilla cakes.

Let $y=$ the number of chocolate cakes.

$$
\left\{\begin{array}{l}
x \geq 0 \\
y \geq 0 \\
x+y \geq 25 \\
y \geq 10
\end{array}\right.
$$

24. Find the values of x and y that maximize the objective function $P=3 x+2 y$ for the graph. What is the maximum value?

a. maximum value at $(5,4) ; 32$
c. maximum value at $(9,0) ; 27$
b. maximum value at $(0,8) ; 16$
d. maximum value at $(0,0) ; 0$
25. Identify the vertex and the y-intercept of the graph of the function $y=-3(x+2)^{2}+5$.

a. vertex: $(-2,5)$;
c. vertex: $(2,5)$;
y-intercept: -7
y-intercept: -7
b. vertex: $(2,-5)$;
y-intercept: -12
d. vertex: $(-2,-5)$;
y-intercept: 9
26. Write $y=2 x^{2}+12 x+14$ in vertex form.
a. $y=2(x+12)^{2}+14$
b. $y=6(x+9)^{2}-4$
c. $y=(x+3)^{2}+14$
d. $y=2(x+3)^{2}-4$

Factor the expression.

27. $-15 x^{2}-21 x$
a. $x(-15 x-21)$
b. $-15 x(x+7)$
c. $-3 x(5 x+7)$
d. $5 x(x-3+7)$
28. $x^{2}+14 x+48$
a. $(x+6)(x-8)$
b. $(x+8)(x-6)$
c. $(x-8)(x-6)$
d. $(x+6)(x+8)$
29. $3 x^{2}+26 x+35$
a. $(x+5)(3 x+7)$
b. $(3 x+7)(x-5)$
c. $(3 x+5)(x-7)$
d. $(3 x+5)(x+7)$
30. $5 x^{2}-22 x-15$
a. $(5 x+3)(x+5)$
b. $(x+3)(5 x-5)$
c. $(5 x+3)(x-5)$
d. $(5 x-5)(x-3)$
31. $9 x^{2}-16$
a. $(3 x+4)(-3 x-4)$
b. $(3 x+4)(3 x-4)$
c. $(-3 x+4)(3 x-4)$
d. $(3 x-4)^{2}$
32. Solve by factoring.
$4 x^{2}+28 x-32=0$
a. $8,-\frac{1}{2}$
b. $-8,4$
c. $-8,1$
d. $1,-\frac{1}{2}$

Solve the equation by finding square roots.

33. $108 x^{2}=147$
a. $\quad 4949$
b. $\begin{array}{ll}-7 & 7 \\ -6 & 6\end{array}$
c. $-\begin{array}{ll}6 & 6 \\ -7\end{array}$
d. $\begin{array}{rr}36 \\ - & 36 \\ 49\end{array}$
34. Use a graphing calculator to solve the equation $8 x^{2}-5 x-10=0$. If necessary, round to the nearest hundredth.
a. $1.16,-1.16$
b. $1.47,-0.85$
c. $2.95,-1.7$
d. $0.85,-1.47$
35. $-6-\sqrt{-48}$
a. $6+i \sqrt{48}$
c. $6-4 i \sqrt{3}$
b. $-6-4 i \sqrt{3}$
d. $-6+4 i \sqrt{3}$

Simplify the expression.

36. $(2-5 i)-(3+4 i)$
a. $1+9 i$
b. $5-i$
c. $-1-9 i$
d. $-10 i$
37. $(2+5 i)(-1+5 i)$
a. $-27+5 i$
b. $23+5 i$
c. $-2+25 i$
d. $-2+5 i$

Solve the equation.
38. $9 x^{2}+16=0$
a. $-3,{ }_{3}, \frac{4}{3} i$
b. $-{ }_{-}^{16} i,{ }_{9}^{16}{ }_{i}$
c. $-\frac{3}{4} i,{ }_{4}^{3} i$
d. $\begin{array}{ll}-4 & 4 \\ -3\end{array}$
39. Find the missing value to complete the square.
$x^{2}+2 x+$ \qquad
a. 2
b. 1
c. 4
d. 8

Solve the quadratic equation by completing the square.
40. $x^{2}+10 x+35=0$
a. $-10 \pm \sqrt{ } 15$
b. $5 \pm i \sqrt{15}$
c. $100 \pm i \sqrt{10}$
d. $-5 \pm i \sqrt{10}$

Use the Quadratic Formula to solve the equation.
41. $-2 x^{2}+x+8=0$
a. $1 \pm \pm \frac{\sqrt{65}}{4}$
b. $4 \pm \frac{\sqrt{130}}{4}$
c. $\quad 1 \pm \frac{\sqrt{65}}{2}$
d. ${ }_{4}^{1} \pm \frac{\sqrt{32}}{2}$
42. Zach wrote the formula $w(w-1)(5 w+4)$ for the volume of a rectangular prism he is designing, with width w, which is always has a positive value greater than 1 . Find the product and then classify this polynomial by degree and by number of terms.
a. $5 w^{5}-w^{4}-4 w^{3}$; quintic trinomial
b. $20 w^{2}$; quadratic monomial
c. $5 w^{3}-w^{2}-4 w$; cubic trinomial
d. $5 w^{4}-w^{3}-4 w^{2}$; quartic trinomial

Describe the pattern in the sequence. Find the next three terms.
43. $13,15,17,19, \ldots$
a. Add 2; 23, 25, 27.
b. Multiply by $2 ; 38,76,152$.
c. Add $-2 ; 17,15,13$.
d. Add 2; 21, 23, 25.
44. Write a recursive formula for the sequence $8,10,12,14,16, \ldots$. Then find the next term.
a. $\quad a_{n}=a_{n-1}+2$, where $a_{1}=8 ; 18$
b. $\quad a_{n}=a_{n-1}+2$, where $a_{1}=18 ; 8$
c. $a_{n}=a_{n-1}-2$, where $a_{1}=8 ; 18$
d. $a_{n}=a_{n-1}-2$, where $a_{1}=2 ;-2$
45. Is the formula $a_{n}=-4 n(n-1)$ is explicit or recursive? Find the first five terms of the sequence.
a. recursive; $1,-4,16,-64,256$
c. explicit; $1,-4,16,-64,256$
b. recursive; $0,-16,-24,-48,-80$
d. explicit; $0,-8,-24,-48,-80$

Is the sequence arithmetic? If so, identify the common difference.
46. $13,20,27,34, \ldots$
a. yes, 7
b. yes, -7
c. yes, 13
d. no
47. Find the 50 th term of the sequence $5,-2,-9,-16, \ldots$
a. -352
b. -343
c. -338
d. -331
48. A grocery clerk sets up a display of 12-pack cartons of cola. There are 15 cartons at the base of the triangle and one at the top. How many cartons of cola are needed for the complete display?

a. 180 cartons
b. 30 cartons
c. 120 cartons
d. 15 cartons
49. If $E F=2 x-12, F G=3 x-15$, and $E G=23$, find the values of $x, E F$, and $F G$. The drawing is not to scale.

a. $\quad x=10, E F=8, F G=15$
b. $x=3, E F=-6, F G=-6$
c. $\quad x=10, E F=32, F G=45$
d. $x=3, E F=8, F G=15$
50. If T is the midpoint of $\overline{S U}$, find the values of x and $S T$. The diagram is not to scale.

a. $\quad x=5, S T=45$
b. $x=5, S T=60$
c. $x=10, S T=60$
d. $x=10, S T=45$
51. $M O$ bisects $\angle L M N, m \angle L M O=8 x-23$, and $m \angle N M O=2 x+37$. Solve for x and find $m \angle L M N$. The diagram is not to scale.

a. $\quad x=9, m \angle L M N=98$
b. $x=9, m \angle L M N=49$
c. $x=10, m \angle L M N=114$
d. $x=10, m \angle L M N=57$

Fill in each missing reason.

52. Given: $m \angle P Q R=x-5, m \angle S Q R=x-11$, and $m \angle P Q S=100$.

Find x.

Drawing not to scale

$$
\begin{aligned}
m \angle P Q R+m \angle S Q R=m \angle P Q S & \text { a. } \\
x-5+x-11=100 & \text { b. Substitution Property } \\
2 x-16=100 & \text { c. Simplify } \\
2 x=116 & \text { d. } \overline{\text { e. Division Property of Equality }} \\
x=58 & \text { en }
\end{aligned}
$$

a. Angle Addition Postulate; Subtraction Property of Equality
b. Protractor Postulate; Addition Property of Equality
c. Angle Addition Postulate; Addition Property of Equality
d. Protractor Postulate; Subtraction Property of Equality
53. Given: $11 x-6 y=-1 ; x=8$

Prove: $\frac{89}{6}=y$

$11 x-6 y=-1 ; x=8$	a.
$88-6 y=-1$	b.
$-6 y=-89$	c.
$y=\frac{89}{6}$	d.
$\frac{89}{6}=y$	e.

a. a. Given
b. Symmetric Property of Equality
c. a. Given
b. Substitution Property
c. Subtraction Property of Equality
c. Subtraction Property of Equality
d. Division Property of Equality
d. Division Property of Equality
e. Reflexive Property of Equality
e. Reflexive Property of Equality
b. a. Given
b. Substitution Property
d. a. Given
c. Subtraction Property of Equality
b. Substitution Property
d. Division Property of Equality
c. Subtraction Property of Equality
e. Symmetric Property of Equality
d. Addition Property of Equality
e. Symmetric Property of Equality
54. Name the Property of Congruence that justifies the statement:

If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$.
a. Transitive Property
c. Reflexive Property
b. Symmetric Property
d. none of these
55. Name an angle supplementary to $\angle E O D$.

a. $\angle B O C$
b. $\angle B O E$
c. $\angle D O C$
d. $\angle B O A$
56. $\angle D F G$ and $\angle J K L$ are complementary angles. $m \angle D F G=\underline{x+5}$, and $m \angle J K L=\underline{x-9}$. Find the measure of each angle.
a. $\angle D F G=47, \angle J K L=53$
b. $\angle D F G=47, \angle J K L=43$
c. $\angle D F G=52, \angle J K L=48$
d. $\angle D F G=52, \angle J K L=38$
57. Find the values of x and y.

a. $\quad x=15, y=17$
b. $x=112, y=68$
c. $x=68, y=112$
d. $x=17, y=15$
58. $L M N O$ is a parallelogram. If $N M=x+15$ and $O L=3 x+5$ find the value of x and then find $N M$ and $O L$.

a. $\quad x=7, N M=20, O L=22$
b. $x=5, N M=20, O L=20$
c. $x=7, N M=22, O L=22$
d. $x=5, N M=22, O L=20$
59. Justify the last two steps of the proof.

Given: $\overline{R S} \cong \overline{U T}$ and $\overline{R T} \cong \overline{U S}$
Prove: $\overline{\Delta R S T \cong \Delta U T S}$

Proof:

1. $\overline{R S} \cong \overline{U T}$
2. Given
3. $\overline{R T} \cong \overline{U S}$
4. Given
5. $\overline{\overline{S T}} \cong \overline{T S}$
3.?
6. $\triangle R S T \cong \triangle U T S$
7. ?
a. Symmetric Property of \cong; SSS
c. Reflexive Property of \cong; SSS
b. Reflexive Property of \cong; SAS
d. Symmetric Property of \cong; SAS
8. From the information in the diagram, can you prove $\Delta F D G \cong \triangle F D B$? Explain.

a. yes, by ASA
c. yes, by SAS
b. yes, by AAA
d. no
9. $A B C D$ is a parallelogram. If $m \angle D A B=115$, then $m \angle B C D=\ldots$? The diagram is not to scale.

a. 125
b. 65
c. 75
d. 115
10. Find $A M$ in the parallelogram if $P N=9$ and $A O=4$. The diagram is not to scale.

a. 8
b. 4
c. 9
d. 4.5
11. Find values of x and y for which $A B C D$ must be a parallelogram. The diagram is not to scale.

a. $x=10, y=38$
b. $x=10, y=21$
c. $x=10, y=7$
d. $x=7, y=10$

Math 3 Midterm (Fall 2016)

Answer Section

MULTIPLE CHOICE

1. D
2. A
3. A
4. D
5. A
6. B
7. C
8. B
9. B
10. C
11. C
12. C
13. A
14. A
15. D
16. A
17. C
18. A
19. D
20. D
21. B
22. D
23. B
24. C
25. A
26. D
27. C
28. D
29. D
30. C
31. B
32. C
33. B
34. B
35. B
36. C
37. A
38. A
39. B
40. D
41. A
42. C
43. D
44. A
45. D
46. A
47. C
48. C
49. A
50. A
51. C
52. C
53. B
54. A
55. C
56. D
57. A
58. B
59. C
60. A
61. D
62. B
63. C
